Use of Java Design Patterns while developing Automation Framework using

Selenium

Agenda for this document: To design frameworks for Selenium by using Java Design Patterns.

Why use Design Patterns in Selenium Framework.
As selenium is an open source tool, so Its does not provide a framework along with it unlike other
paid tool. So whoever is using Selenium has to write a framework for it.

Now, If you design your framework by using Java Design Patterns It can have multiple strengths:

1.Well structured code base

2.1t will be generic and robust.

3. Framework re-usability and maintainability will be very high

4. Enhancements can be done with very little code changes without disturbing the existing Flows.
5. Debugging of Scripts/framework (if any) will be very easier.

6. Framework can be used with ease by the people who are new to Automation.

What Type of Design Patterns will be useful for Selenium Framework.

First of all it depends on the requirement for the framework as it varies from Company to company
and sometimes project to project, but then also there are some generic scenarios where we can use
design patterns like Factory Design Pattern, Abstract Design Pattern, Singleton Design Pattern in the

framework.
Which Area of a Generic Framework can be developed using Java Design Patterns:

Scenarios:
1. We are having a requirement to use Local WebDriver, Grid, ThreadDriver, HeadLess Driver,
EventDriver, RemoteDriver with Sauce Labs Implementation etc.
so there we can use Factory Design Pattern and along with the above feature if you need multiple

browsers like FireFox, Chrome, Safari, IE etc etc. then we can use Abstract Factory Design Pattern.

2. If you want to support Data Handling using xIs file ,properties file, csv files etc etc there we

can use the Factory Design Pattern.
3. We can configure the configuration Class using Singleton Design Pattern.

HOW.

Find the example for different driver implementation using Factory Design Pattern.

We are Creating an Interface ICurrentDriver which is Implemented by all type of Driver Classes

such as ThreadDriver, LocalDriver, RemoteDriver because the implementations are different for

each of them.

File Edit Source Refactor Navigate Search Project Run Window Help

TN S0 we sy pM@a e e] Quick Access | | ()

‘s [l LocalDriverjava [J] Driverjava [J] ICurrentDriver... 3 | [J] DriverProvider.. 1] Br ider... ol ider.. 1] LocalDriverjava [1] ThreadDriverjava [1] RemoteDriverjava =& -
12 i |ackage com.clh.driverImplementation; - o
o=
import org.openga.selenium.WebDriver; -
=2
public interface ICurrentDriver { 5
= Vaad @l
* Will return the current driver @
“

B

public WebDriver currentDriver(IDriverProvider driverProvider);

public WebDriver currentDriver(IDriverProvider driverProvider,final String browserliame);
o g

* Will clear the driver session

o

public WebDriver clearDriver();

Writable Smart Insert

E Java - FrameWork

File Edit Source Refactor Navigate Search Project Run Window Help

L QiRiF-ro-a-Fe-i® - PO

0 foe oo Quick Access | e | ()

= || 1] LocalDriverjava V] riverjava [J] ICurrentDriverjava [J] IDriverProviderjava [J] LocalDriverjava 12 | [J] ThreadDriverjava [J] RemoteDriver,java =8 =
1t 7 package com.clh.driverImplementation;| ||| e
=8 | 5T

s ® import org.openga.selenium.WebDriver;[] E
=

public class LocalDriver implements ICurrentDriver{ o

&l
private WebDriver driver; @

5 private LocalDriver(){
driver=null;

}
= LocalDriver(LocalDriver localDriver){ =
this();
- @override
- public WebDriver currentDriver(IDriverProvider driverProvider) {
7] // TODO Auto-generated method stub
if(driver==null)
driver=driverProvider.getDriver();
return driver; B |
return driver;
}
testNg Parameterization
& @override =
a public WebDriver currentDriver(IDriverProvider driverProvider,

String browserllame) {
if (driver=-null)

Ariver =driverProvider @etNriverlhrowsariame) -

Writable Smart Insert

http://2.bp.blogspot.com/-GkdZKH_twzk/VNZ6JkU9T-I/AAAAAAAAAbw/4EjsKrHJDhw/s1600/Untitled.png
http://2.bp.blogspot.com/-6nE5JEAb1tY/VNZ6fQ5YnII/AAAAAAAAAb4/776iXB5ymiY/s1600/2.png

File Edit Source Refactor Navigate Search Project Run Window Help

SRR TR I WY C A R i

(] 8] = Gl =0 o= | s Quick Access | | (=)

[J] LocalDriverjava [J] Driverjava [J] ICurrentDriverjava [J] DriverProviderjava [1] ThreadDriverjava (1] RemoteDriverjava i 5

-

i package com.clh.driverImplementation; - :___
@ import org.openga.selenium.WebDriver;[] ==

public class RemoteDriver implements ICurrentDriver { =
DesiredCapabilities capabilities = new DesiredCapabilities(); %

@

RemotelebDriver remoteDriver; B

webbriver driver;

= private RemoteDriver() {
driver=null;

}

(]

= RemoteDriver (RemoteDriver remoteDriver)
this();

& @override
public WebDriver currentDriver(IDriverProvider driverProvider) {
if(driver==null)

driver=driverProvider.getDriver();
System.out.println("print driver"+driver);
return driver;

return driver;

}

& @override
public WebDriver currentDriver(IDriverProvider driverProvider, String browserlame) {
if (driver=—null)
{ driver =driverProvider.getDriver(browseriame);
System.out. println(driver);
return driver;

2lea if (Arivarlonnl1V

Writable Smart Insert 9:3

B

File Edit Source Refactor Navigate Search Project Run Window Help

mriliaixis-o-a-e-is - 20

0 foe oo Quick Access | e | ()

[J] LocalDriverjava [J] Driverjava [J] ICurrentDriverjava [J] DriverProviderjava [1] ThreadDriverjava 2 [J] RemeteDriverjava &

-} =
" package com.clh.driverImplementation; - ox

- ot

import org.openqa.selenium.WebDriver; .
=
public class ThreadDriver implements ICurrentDriver{ ®

private ThreadLocal<WebDriver> threadDriver=new Threadlocal<liebDriver>();

&l
@
3

= private Threadbriver(){
}
= public ThreadDriver(ThreadDriver driver){

this();
}

| =

n

& @override
public synchronized WebDriver currentDriver(IDriverProvider driverProvider) {
// TODO Auto-generated method stub
WebDriver driver=threadDriver.get();
system.out.println(“print driver+driver);

ull){
riverProvider.getDriver();
threadDriver.set(driver);
System.out.println("print driver"+driver);
return driver;

return driver;
} =

& @verride
public synchronized WebDriver currentDriver(IDriverProvider driverProvider, String browserliame) {
// TODO Auto-generated method stub
return null;

Writable Smart Insert 17:5

We can Design another Class Factory which will provide us the Object for the required Driver
classes at runtime depending on the need.So we don't need to create and use separate Objects for
each of the Driver classes,we will use only Factory class object and can access any of the Driver

classes members and fields.

http://4.bp.blogspot.com/-8DFykMmtU3U/VNZ6kFnPsAI/AAAAAAAAAcA/mLVvVenn5wg/s1600/3.png
http://3.bp.blogspot.com/-ucv3yfsdT7c/VNZ6tND_mrI/AAAAAAAAAcI/hRvIoO92z3c/s1600/4.png

B Java - FrameWorkdmplementation/: clh/drr ion/Driverfactoryjava - Ecli

File Edit Source Refactor MNavigate Search Project Run Window Help

e hammN SIS I RS] s [E T R AR R R Quick Access | B | 0]

[] LocalDriverjava [3] Driverjva [3) ICurrentDriverjava [1] IDriverProviderjava [3] ThreadDriverjava [3] RemoteDiiverjava | [3] DriverFactoryjava 5 == |

= private ICurrentDriver getFactoryDriver(){ i £

String driverName-readerForPropertiesFile. dataReader("driver”); —

System.out.println(driveriiame); p

if (driverName.equalsignoreCase("Localdriver”)) -

L

if(currentdriver==nul1){ =l a
currentDriver-new Localbriver(null);

System.out.println(currentdriver"+currentDriver); B

return currentDriver;

System.out.println("the Current local driver is not null");

else if(driveriame.equalsIgnoreCase(ThreadDriver”))
{ if(currentDriver=—null){
currentDriver=new ThreadDriver(null);
System.out.println("currentdriver +currentDriver);
return currentDriver;

[awren

m

else if (driverName.equalsIgnoreCase(RemeteDriver”)){
if(currentDriver==null){
currentDriver=new RemoteDriver(null);
System.out.println(*currentdriver +currentdriver);
return currentDriver;
H

H

elsef
System.out.println(*the current Thred Driver is not null®);

return currentDriver;

Writable Smart Insert 47:9

By this way we can use Design Patterns as per the requirement, we can use this concept in case of

Handling Data in Selenium Framework.

http://3.bp.blogspot.com/-NRTEI3q8haU/VNaGg2nt8fI/AAAAAAAAAcg/aqlHMpBgcn4/s1600/6.png

	Use of Java Design Patterns while developing Automation Framework using Selenium

